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Localization of electromagnetic waves in two-dimensional random media is studied analytically. A simple
but realistic model, based directly on the Maxwell equations, is developed. Almost perfect localization is
predicted in sets of randomly distributed two-dimensional dipoles which are linearly coupled to the electric
field of the incident wave. Striking qualitative similarities are observed between our results and effects found
experimentally in microwave localization by random arrays of dielectric cylinders [R. Dalichaouch, J. P.
Armstrong, S. Schultz, P. M. Platzman, and S. L. McCall, Nature (London) 354, 53 (1991)].

PACS number(s): 42.25.Hz, 71.55.Jv, 78.20.Dj

The localization of the electron wave functions originates
from investigations of the electron transport in disordered
solids, usually semiconductors [1]. In such media the propa-
gation of electrons is altered by the presence of a random
potential; this phenomenon is completely based on the inter-
ference effects in multiple elastic scattering. Since interfer-
ence is a common property of all wave phenomena, many
generalizations of the Anderson localization to other matter
waves (neutrons) as well as classical waves (electromagnetic
and acoustic waves) have been proposed [2,3] and, to some
extent, also elaborated [4—6]. In this paper we focus our
attention on electromagnetic waves. There is a variety of
experimental investigations in this case, both in the optical
and microwave domains. Weak localization, manifesting it-
self as enhanced coherent backscattering, is now experimen-
tally established beyond any doubts. Striking coherent, back-
directed peaks of intensity superimposed upon intensity of
electromagnetic waves diffusely scattered from random me-
dia have been observed for different systems of randomly
distributed scatterers forming effectively both two-
dimensional [7,8] and three-dimensional [9—-11] media.
Weak localization is relatively well understood theoretically
[12-14] and, as the coheren: backscattering affects the dif-
fusion constant describing the propagation of electromag-
netic waves in strongly scattering random media, it is the
precursor of strong localization. The question as to whether
interference effects in strongly scattering random media can
reduce the diffusion constant to zero producing purely local-
ized states depends on the dimension of the sample under
consideration. Despite some reasonable indications that
strong localization could be possible in three-dimensional
random dielectric structures (mainly some suspensions of
TiO, spheres in air or in some low-refractive-index sub-
stances [8,15—18] have been considered) the convincing ex-
perimental demonstration has been given only for two di-
mensions [19]. In this case the strongly scattering medium
has been provided by a set of dielectric cylinders randomly
placed between two parallel aluminum plates on half the
sites of a square lattice.

Despite the huge amount of existing literature, there still
is a lack of sound theoretical models providing deeper in-
sight into this interesting effect. To be realistic, such models
should be based directly on the Maxwell equations. On the
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other hand, they should be simple enough to provide calcu-
lations without too many too-crude approximations. The
main purpose of our paper is to construct such a model for
the two-dimensional localization and to elaborate in detail its
major consequences.

In the standard approach to localization of electromag-
netic waves [2,20] a monochromatic wave,

E(F,t)=HEF)e '+ E*(F)ei, (1)

is called localized in a nondissipative dielectric medium if
the squared modulus of the electric field | (r)|? is localized.
This definition is based on the analogy between the Helm-
holtz equation,

(~V24+ K2 [1- ()T EG) = k2 &(7), )

and the time-independent Schrodinger equation. In the above
formula ky=27/Ay and A\, denotes the wavelength in
vacuum. It is known, however, that this analogy is far from
complete. As follows from recent investigations, consider-
able care must be exercised in transforming results concern-
ing localization of electrons to the case of electromagnetic
waves [21,22]. To some extent the Helmholtz equation (2)
may be interpreted as the eigenvalue equation for the wave
function &(7) corresponding to the energy k5. However, the
presence of the energy-dependent “potential” kj[1— €(7)]
strongly affects dynamical properties in scattering. For ex-
ample, the transport velocity for multiple scattering pro-
cesses can be very different from that observed for electrons
[21,23]. These differences can be understood as a conse-
quence of the fact that the counterpart of the Ward identity
for electromagnetic waves contains additional ‘‘mass-
enhancement” terms [21,22]. Closely related is the fact that
the electric field vector cannot be interpreted as a probability
amplitude. Because the conserved quantity is energy density
of the field, we prefer to say that a monochromatic field (1) is
localized if the time-averaged energy density of the field
vanishes far from a certain region of space. It will be clear
later that this approach is more natural and simplifies some
considerations.

Since our discussion of localization is restricted to mono-
chromatic fields only, we shall assume that the polarization
of the dielectric medium providing localization is an oscilla-
tory function of time P(7,t)=Re[Z(#)e '“']. Instead of
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solving the Helmholtz equation (2) and then checking if the
resulting wave obeys the transversality condition we prefer
to study directly Maxwell equations in an integral form [24]
R R L. R eikd‘r#’]
g(F)=?§(O)(F)+VXVde3r' gﬁ(?')m, 3)
where E;”(O)(F ) denotes a solution of the Maxwell equations
in vacuum and ky= w/c is the wave number.

We believe that what really counts for localization is the
scattering cross section and not the geometrical shape and
real size of the scatterer. Therefore we will represent the
dielectric cylinders located at the points g, by two-
dimensional dipoles

N
P(F)= 2, Ba 85— a). 4)
a=1
Since the polarization of our system varies only at a certain
plane, we have introduced cylindric coordinates 7= (3,z) in
the above formula. Let us stress that there is, in fact, no loss
of generality. In practice any dielectric medium may be mod-
eled by a set of discrete dipoles. This so-called coupled-
dipole approximation was used to study light scattering by a
dielectric sphere [25] and more recently to obtain the scat-
tering coefficients of arbitrarily shaped particles [26]. There
is, however, one important difference. The discrete dipole
approximation works well only if there are many dipoles in a
volume whose dimensions are of the order of the wavelength
[24]. In numerical calculations performed on supercomput-
ers, a single small dielectric particle is built out of about
10° dipoles [27]. In our case a single dielectric cylinder with
diameter comparable to the wavelength [19] is modeled only
by one dipole with properly adjusted scattering properties.
The crucial point is how each dipole should be coupled to
the electromagnetic field. Of course the standard Lorenz-
Lorentz formula [24] is now rather useless, because it is only
approximately valid in the macroscopic limit. To provide a
realistic and self-consistent description we must assume that
the average energy is conserved in the scattering process.
Therefore, if we isolate a single dipole, then the time-
averaged field energy flux integrated over a closed surface
3, surrounding it should vanish for an arbitrary incident
wave, namely,

fd&..é(;):ilRef d&-{EF)X H#*(F)}=0. (5)
s 47 2 s

It is remarkable that this simple and obvious requirement
gives an explicit form of the field-dipole coupling.

For the sake of simplicity let us now assume that both the
free field and the medium are linearly polarized along the z
axis £OF)=¢,80(p), Ar)=e,Ap). It is now
evident from Eq. (3) that the electric field of the wave radi-
ated by the ath dipole reads as

ZulF)=E. K5 pu 85— pu)» (6)
where the Green function in two dimensions is expressed by
the modified Bessel function of the second kind

. +oo gikolrl
g<2>(p)=f dz H =2 Ko(—ikolpl). @)

Therefore our discussion may be restricted to the scalar
theory. This is impossible in three dimensions when the
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Green function is replaced by a tensor acting on the dipole
moment and the proper description of the interaction be-
tween the field and the medium is more complicated [28].
Now we can perform the integration in Eq. (5) assuming
that it is performed over a cylinder of unit height surround-
ing the ath dipole. The total energy flux may be split into
three terms. The first term describes the total time-averaged
energy flux integrated over a closed surface for a free field
and thus vanishes. The second term corresponds to the time-
averaged energy radiated by the ath dipole per unit time

1 - -
L—Ref do-{Z,(F)XIH,(F)=2m)? k) |pal® (8)
41 2 s

To calculate the last interference term let us use the follow-
ing identity fulfilled by a field #(7) that obeys the free Max-
well equations inside a closed surface 3;:

1 eik0|7"}'| . . ikolr—7'|
Er)y=—| do-{ —=— VETF)—EF" )V —=— ;.

(r) 47TL T T (r')—&r’) =7 9)
The above equation is known as the Kirchhoff integral for-
mula [24]. After simple but lengthy calculations we finally
arrive at the following conservation law which is equivalent
to Eq. (5):

ki o> =Im{p} &' (p.)}, (10)
where the field of the wave incident on the ath dipole,
£ (p)= 8B+ 2 Eplpa), (11)
b#a

is the sum of the free field and the waves radiated by other
dipoles.

Assuming that the dipole moment p, is a linear function
of the electric field &' (p,) we get from Eq. (10)

ik pa= 13— 1)&" (p,), (12)

where ¢, is some arbitrary real number. Thus, to provide
conservation of energy, the dipole moment must be coupled
to the electric field of the incident wave by a complex ““po-
larizability” (e’%a—1)/2. This fact is not specific for the
considered two-dimensional case; it remains valid also in
three dimensions [28]. We note that the field of the incident
wave calculated at the dipole is finite as opposed to the total
field which is not defined at the dipole. Inserting (12) into
(6), using (11), and introducing the following convenient no-
tation:

g2(p,—py) for a#b

imGap= (13)

0 for a=b,
we finally arrive at the very simple set of linear algebraic
equations

N
B p)=E B +5D Ga(€h=1) &' (By),

b=1
a=1,...,N, (14)
determining the field acting on each dipole &”'(p,) for a
given free field £©(5,). If we solve it and calculate the
dipole moments we are able to find the electromagnetic field

everywhere in space using the Maxwell equations (3).

To prove localization in the simple case of field sources
vanishing outside of a certain region of space [like those
given by (4)] one has to investigate the electromagnetic field
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in the free space outside of the sources. According to our
definition of localization, if an electromagnetic wave is lo-
calized then the time-averaged field energy density given by

P77 )= (116 m{|E(F) [+ | 47) %) (15)

must vanish far from the sources. It is evident from Eq. (3)
that in this region the radiated field becomes zero. Therefore
the free field must vanish on a sufficiently large closed sur-
face. Thus the Kirchhoff integral formula implies that the
free field is zero everywhere inside this surface. It is now
evident that if the system of dipoles (4) provides localization
of the electromagnetic wave then the system of equations
(14) should have a nonzero solution for vanishing free field
& =(. This means that the eigenvalues £ corresponding to
the eigenvectors of the system (4)

E8 (b)=5p,),

describing localized waves should be equal to zero. In a gen-
eral case the eigenvalues § depend on the positions of di-
poles p, and the phases ¢, describing their coupling to the
field. However, assuming the same scattering properties of
all dipoles, namely, ¢,= ¢, we can express the eigenvalues
as &=1—[(e'?—1)/2] &', where &' are the eigenval-
ues of the G matrix which depends only on the current po-
sitions of the dipoles. Note that in this case the eigenvectors
of the system (14) are simultaneously eigenvectors of the G
matrix. Thus, if g, are given, then for each eigenvector of the
system of equations (14) there exists a certain angle

p=arg[1+(&'/2)]—arg[£'/2], 17)

for which the modulus of the corresponding eigenvalue &
takes a minimal value | £, given by

11+ (&72)| =€ 72]|=| &l mn=<|EI=<1. (18)

a=1,...,N, (16)

As a simple example let us consider a system of
N=100 dipoles (4) distributed randomly in a square with
the density n of one dipole per wavelength squared:
n/Ag*=1.0. We have calculated and diagonalized numeri-
cally the G matrix (13) describing this situation. Then we
have chosen a certain eigenmode of the system (14) and
checked if the corresponding eigenvalue can approach zero.
According to Eq. (18) we have calculated the minimal value
of its modulus and obtained |£|,;,1072. Therefore the
field incident on each dipole |&”(5,)|? is large compared to
the free field | £(9(5,)|? calculated at the dipole. Therefore
the time-averaged energy density in the medium under con-
sideration can be much greater than the energy density in the
surrounding free space. Such a quasilocalization is practi-
cally indistinguishable from the perfect one. Of course the
free field is not completely determined by specifying its val-
ues at the dipoles according to Eq. (16). However, we believe
that it may be constructed in such a way that the time-
averaged energy density of the free field will not exhibit
local minima at the dipoles. To help those intuitive consid-
erations, we have plotted in Fig. 1 the time-averaged energy
density of the field corresponding to the considered eigen-
mode as a function of position. To avoid some infinities near
the dipoles, this figure shows in fact a discrete function

7 () =(1/16m) {|&" (B> +|7" (B)1?.  (19)
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FIG. 1. Time-averaged energy density of the field localized in the me-

dium consisting of 100 randomly distributed two-dimensional dipoles as a
function of position. The density of dipoles is one dipole per wavelength
squared.
Also, for simplicity, the free field has been set to zero, since,
according to our assumption, a nonzero field may modify the
plot only by 1%. In Fig. 2 we have a contour plot of the
time-averaged energy density, corresponding to Fig. 1.

Obviously perfect localization (in the sense of our defini-
tion) is impossible in systems (4) consisting of a finite num-
ber of dipoles. However, for a fixed density of the medium
under consideration quasilocalization becomes better for an
increasing number of dipoles. To illustrate this statement we
have plotted in Fig. 3 the minimal possible eigenvalue from
all eigenmodes

|§(j)Imin ’ (20)

IE|min= min
j=1,...,N
as a function of the number of dipoles N.

In fact, for a fixed system of dipoles given by Eq. (12), we
see that Eq. (20), together with the equation determining the
corresponding ¢, Eq. (17), defines the dependence of the
scattering properties of dipoles at the frequency of the local-
ized field. Therefore we have constructed a model of a sys-
tem of dielectric cylinders with the frequency-dependent per-
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FIG. 2. Contour plot corresponding to Fig. 1. The positions of the di-
poles are marked by black dots.
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FIG. 3. |E| L as a function of the number of dipoles N for various
densities # of the medium.

meability e(w) chosen to provide the best possible
localization for all frequencies. Indeed, as shown in Fig. 4, in
such an abstract medium gquasilocalization takes place prac-
tically for all sufficiently large densities. Of course in an
experiment the dielectric cylinders must have finite diameter
to provide scattering cross section sufficiently large for lo-
calization which imposes a limit on the maximal density. Let
us note that in Fig. 4 the sharp minima and maxima caused
by resonances in a random medium and which are usually
observed in experiments [19] are not present. This is of
course due to our choice of the dependence of the scattering
properties of the dipoles determined by ¢ as a function of
frequency of localized electromagnetic waves.

In summary, we have presented an approach to localiza-
tion of electromagnetic waves in two dimensions based on
Maxwell equations in integral form. A dielectric medium
providing localization is modeled by a system of discrete
dipoles. Each dipole corresponds to a single dielectric cylin-
der. In this treatment the scattering properties of the medium
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FIG. 4. |E| i as a function of the density of the medium n.

may be eliminated from the considerations and the best pos-
sible localization for a given distribution of particles can be
studied. It was shown that, in a medium consisting of a
finite number of dielectric cylinders with specially chosen
frequency-dependent permeability, a perfect photonic band
gap is impossible. However, quasilocalization becomes bet-
ter with increasing density of the medium or number of scat-
tering particles. Instead of studying elastic scattering of elec-
tromagnetic waves by a pointlike particle using the #-matrix
formalism and several crude approximations [29], we pre-
sented a simple method based on the Kirchhoff theorem.
However, our general formula may also describe several un-
physical systems. To solve this problem, a detailed analysis
of the internal structure of the scatterer is needed. The gen-
eralization of the presented concepts to the three-dimensional
vector case is a subject of a forthcoming paper [28]. We plan
to analyze transport properties of our abstract medium, such
as the mean free path, and check several heuristic criteria of
localization.
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